‘Smart’ paper can conduct electricity, detect water
Dec 12, 2017
In cities and large-scale manufacturing plants, a water leak in a complicated network of pipes can take tremendous time and effort to detect, as technicians must disassemble many pieces to locate the problem.
The American Water Works Association indicates that nearly a quarter-million water line breaks occur each year in the U.S., costing public water utilities about $2.8 billion annually.
A University of Washington team wants to simplify the process for discovering detrimental leaks by developing “smart” paper that can sense the presence of water. The paper, laced with conductive nanomaterials, can be employed as a switch, turning on or off an LED light or an alarm system indicating the absence or presence of water.
The researchers described their discovery in a paper appearing in the November issue of the Journal of Materials Chemistry A.
“Water sensing is very challenging to do due to the polar nature of water, and what is used now is very expensive and not practical to implement,” said lead author Anthony Dichiara, a UW assistant professor of bioresource science and engineering in the School of Environment and Forest Sciences. “That led to the reason to pursue this work.”
Along with Dichiara, a team of UW undergraduate students in the Bioresource Science and Engineering program successfully embedded nanomaterials in paper that can conduct electricity and sense the presence of water. Starting with pulp, they manipulated the wood fibers and carefully mixed in nanomaterials using a standard process for papermaking, but never before used to make sensing papers.
Discovering that the paper could detect the presence of water came by way of a fortuitous accident. Water droplets fell onto the conductive paper the team had created, causing the LED light indicating conductivity to turn off. Though at first they thought they had ruined the paper, the researchers realized they had instead created a paper that was sensitive to water.
When water hits the paper, its fibrous cells swell to up to three times their original size. That expansion displaces conductive nanomaterials inside the paper, which in turn disrupts the electrical connections and causes the LED indicator light to turn off. This process is fully reversible, and as the paper dries, the conductive network re-forms so the paper can be used multiple times.
The researchers envision an application in which a sheet of conductive paper with a battery could be placed around a pipe or under a complex network of intersecting pipes in a manufacturing plant. If a pipe leaks, the paper would sense the presence of water, then send an electrical signal wirelessly to a central control center so a technician could quickly locate and repair the leak.
In addition, the paper is so sensitive that it can also detect trace amounts of water in mixtures of various liquids. This ability to distinguish water from other molecules is particularly valuable for the petroleum and biofuel industries, where water is regarded as an impurity.
“I believe that for large-scale applications, this is definitely doable,” Dichiara said. “The price for nanomaterials is going to drop, and we’re already using an established papermaking process. You just add what we developed in the right place and time in the process.”
The nanomaterials added to the paper were engineered in such a way that they can be incorporated during conventional papermaking without having to modify the process. These materials are made of extremely conductive carbon. Because carbon is found in all living things, nearly any natural material can be burned to make charcoal, and then carbon atoms can be extracted to synthesize the materials. The team has experimented with making nanomaterials from banana peels, tree bark and even animal feces. They also tried making nanomaterials from wood scraps to show that the entire papermaking process can be completed with cheap, natural materials.
“Now we have a sustainable process where everything is from pulp and paper, and we can make conductive materials from them,” Dichiara said.
The paper, stiff and smooth in texture, is a rich black color because of the nanomaterials (carbon from charcoal). The 8-inch disks made in the lab are prototypes; the team hopes to test the process on an industrial-sized papermaking machine next, which will require more nanomaterials and paper pulp.
Other co-authors are Sheila Goodman, a UW graduate student, and Delong He and Jinbo Bai of Universite Paris-Saclay in France. UW undergraduate students Jimeng Cui, Riley Fitzpatrick, Sydney Fry, Demi Lidorikiotis, Anna Song and Zoie Tisler completed additional lab work.
Funding for this research came from the U.S. Department of Agriculture’s National Institute of Food and Agriculture, McIntire Stennis project, and from the UW School of Environmental and Forest Sciences.
More News and Articles
Dec 06, 2023
News
LeakNavigator saves millions of litres of water
The UK’s largest water and wastewater company, Thames Water, has selected Ovarro’s end-to-end service LeakNavigator to deliver a three-year leakage reduction contract, writes Tony Gwynne, global leakage solutions director at Ovarro.
Dec 04, 2023
News
Water loss reduction initiative expands to Mexico
In an effort to combat water loss, a global collaboration involving organizations from the UK, US, and Mexico is launching a long-term project in Querétaro, Mexico. Utilizing actionable AI, the initiative aims to manage and conserve water resources across 350km …
Dec 01, 2023
News
TBM on site for Melbourne CBD sewer upgrades
A microtunnel boring machine (TBM) has arrived on Elizabeth Street to help deliver one of the biggest upgrades to Melbourne CBD’s sewer network in more than a century.
Nov 29, 2023
News
Shedding light on evaporation
Researchers at MIT (Massachusetts Institute of Technology) have made a groundbreaking discovery that could change our understanding of evaporation, a ubiquitous process in our environment. They found that under certain conditions, light can directly cause evaporation without the need for …
Nov 27, 2023
News
NEW UNITRACC Construction Site Documentation: "Rehabilitation of a DN 400 Concrete Gravity Sewer with a SAERTEX-LINER® MULTI over a Length of 69 m" (CIPP)
New construction site documentation in the renovation section of the e-learning platform: Rehabilitation of a DN 400 concrete gravity sewer with CIPP lining using SAERTEX-LINER® MULTI, type S+ Standard. The objective of this rehabilitation measure was to enhance the structural …
Nov 24, 2023
News
Tracto grundoram supports sewer replacement at coastal town
Budleigh Salterton is a popular and picturesque seaside town situated within the East Devon Area of Outstanding Natural Beauty. Located at the start of the stunning Jurassic Coast; a UNESCO World Heritage Site recognised for its outstanding rocks, fossils and …
Nov 22, 2023
News
Interflow’s sustainability strategy
Having been in business for 86 years, Interflow has proven it knows a thing or two about longevity. Right now, that requires an all-encompassing sustainability strategy, as Richard McCarthy, Interflow’s executive general manager southern region, explained.
Nov 20, 2023
News
Mastering public sector challenges together
An interview with Managing Director Robert Ristow
Nov 17, 2023
News
Tractebel and Aurecon forge strategic partnership to revolutionize dam projects in Queensland, Australia
Tractebel and Aurecon form a strategic alliance to revolutionize dam projects in Queensland, Australia, combining their global expertise and local knowledge to meet the rising demand for dam upgrades.
Nov 15, 2023
News
HDD to help Monarto pipeline project
SA Water will use horizontal directional drilling (HDD) to assist in installing a section of pipe underneath the Melbourne to Adelaide rail corridor.
Nov 13, 2023
News
Neom’s sustainable water solutions with renewable desalination
Saudi Arabia’s visionary city, Neom, is leading the way in sustainable water solutions with the construction of a desalination plant powered entirely by renewable energy.
Contact
University of Washington
1410 NE Campus Parkway
WA 98195 Seattle
United States
Phone:
+1 206 543-2544