What if plastic could detect light or clean wastewater?
Apr 28, 2022
This is precisely the principle behind the idea of bioengineered living, “functional” materials. This clever study used the kombucha technique to grow a starchy material (similar to ingredients of biodegradable plastic) that can detect light, remove hormones from wastewater, and more.
Engineered living materials are composed of both synthetic materials and living cells. They are made in a lab to do things, like respond to their environment, which goes beyond typical materials like inert plastics used to make so many of our products. What scientists want the material to do determines how it is produced.
Synthetic biologists, biologists who try to simulate life in the lab, have for a long time been engineering bacteria such as E. coli to produce organic materials of all kinds such as medicines, polymers, or starches. The idea was innovative, but many past experiments failed to produce high yields. Yield is important — companies want to produce engineered living materials at scale, and with minimum equipment and a low environmental impact.
Bacterial cellulose is a starchy organic compound that is made by certain species of bacteria. Bacterial cellulose can be altered by using engineering techniques to produce substances that can help degrade toxins such as antibiotics or hormones present in wastewater streams. Bacterial cellulose can also be produced at a low cost and is capable of being decomposed by bacteria and other organisms. Synthetic biologists have successfully engineered yeast and bacteria to make cellulose-based materials such as plastic, which has been used for biodegradable product packaging.
Similarly to how plant leaves build materials from tissues to achieve functions essential for their survival, synthetic biologists at MIT and Imperial College London wanted to develop a material that was like complex living tissue. However, instead of plants, they modeled their experiments after the process for making a drink called kombucha. Kombucha is a fermented drink that produces a symbiotic culture of bacteria and yeast, or “SCOBY.” The SCOBY on kombucha is a thick mass at the surface called a “pellicle” which is made of bacteria, yeast, and cellulose.
However, this co-culture is not a typical SCOBY that you’d find in a beverage. In the experiment, the scientists genetically manipulated the yeast in a SCOBY to make a synthetic SCOBY, or “Syn-SCOBY” for short. In a series of experiments, they got the Syn-SCOBY to sense light or chemicals in a solution. The Syn-SCOBY contained two special microbes – a lab strain of yeast, S. cerevisiae, and cellulose-producing bacterium called Komagataeibacter rhaeticus.
The researchers inserted genes into the yeast so they could perform tasks such as sensing chemicals or secreting enzymes, while Komagataeibacter rhaeticus bacteria produced the bacterial cellulose. The researchers had to figure out the right conditions that make both the yeast and bacteria happy, such as the correct amount of sugar to add. They tested the co-culture of the yeast and bacteria in multiple media recipes to determine which one produced the best pellicle.
The Syn-SCOBY produced a healthy pellicle and a thick layer of bacterial cellulose in three to four days. After successfully growing the pellicle, they tested to make sure it could be dehydrated and then rehydrated, which is an important characteristic for its use in industry since the material may need to be stored for long periods of time. They did find that the bacteria/yeast/cellulose material they made retained its function even after drying and rehydration.
In their earlier experiments, some of the S. cerevisiae yeast cells did not incorporate well into the pellicle and were found at the bottom of the liquid. This is not optimal since the scientists need to make sure the yeast cells stay in the pellicle in high concentrations, to perform the tasks instructed by the genetic programs assigned to them. To solve this problem, scientists grew the yeast in a more dense nutrient broth, forcing it to incorporate into the pellicle at the surface.
Once they achieved the desired result, scientists proceeded to make Syn-SCOBY materials that are engineered to respond to chemical and physical stimuli. For example, they instructed S. cerevisiae yeast to sense light by adding a gene to the yeast for a protein that changes shape when exposed to light. They also made a version of the material that could detect a hormone called B-estradiol, a form of estrogen. To do this, they inserted a gene into the yeast that produces a green fluorescent glowing protein when the estrogen comes into contact with the yeast. Chemical sensing materials may be useful for detecting contaminants in water.
Furthermore, they developed a contaminant-sensing Syn-SCOBY that allowed the yeast to detect other toxins present in the environment and secrete enzymes that helped remove them. Scientists engineered the yeast to secrete an enzyme called laccase to degrade the B-estradiol. These results show that the yeast cells are capable of responding to stimuli.
Syn-SCOBY represents one of the first batch-produced synthetic living materials with functions beyond structure for research, product manufacturing, and environmental remediation.
More News and Articles
May 30, 2023
News
Trenchless contractor puts maintenance hole relining system through its paces
Civil and trenchless specialists M Tucker & Sons showcases its expertise through a UV lining project.
May 26, 2023
News
City of Toronto launches tunnel boring machine for stormwater tunnel and largest basement flooding prevention project
Today, the City of Toronto marked a major milestone for the Fairbank Silverthorn Storm Trunk Sewer System project, launching a tunnel boring machine that will work to construct a new storm sewer that will collect, store and move stormwater from …
May 24, 2023
News
Global Water and Wastewater Utilities Take Aim at Climate Change
New Survey of 100 Utilities Tracks Net-Zero Progress: 75% of Respondents to Reduce Greenhouse Gas Emissions by 2040
May 22, 2023
News
Regional San’s monumental wastewater treatment plant expansion project delivered ON schedule and UNDER budget
The EchoWater Project, one of the largest public works projects in the Sacramento region’s history, takes wastewater treatment to a whole new level
May 19, 2023
News
Haliotis 2: Wastewater recovery and treatment complex
In April the future, next-generation wastewater recovery and treatment complex for the Métropole Nice Côte d’Azur “Haliotis 2” was presented. Christian Estrosi, Mayor of Nice, President of the Métropole Nice Côte d’Azur and Deputy President of the Région Provence-Alpes-Côte d’Azur …
May 17, 2023
News
Wrapping up the challenges in SA
In December 2022, Denso Australia completed the supply of a project involving the protection of 400 lineal metres of DN250 mild steel pipeline in Bolivar, South Australia.
May 15, 2023
News
New South Wales university receives network upgrade using SAERTEX-LINER® MULTI Type S+
Australian Pipeline Management (APM) has successfully relined three separate pipelines running under a university in Sydney with UV cured-in-place technology from SAERTEX multiCom® GmbH.
May 12, 2023
News
IMPREG continues to invest in Australian and NZ market
With increasing demand of IMPREG’s unique UV pipe solution, the German company continues to invest in the Australian and New Zealand market.
May 10, 2023
Article
Yonge Street Project Combines Trenchless Rehab and New Install Practices
In the fall 2020, the Regional Municipality of York initiated a project to rehabilitate a 127 m long concrete box culvert under Yonge Street. The Region retained Jacobs Engineering to provide design and construction support services.
May 08, 2023
News
Climate adaption solutions for the water sector in the German-Danish border area
More than 60 participants met in Kolding, Denmark, from March 23 to 24 for the final conference of the INTERREG-Project NEPTUN. In the frame of this project, more than 40 partners elaborated 15 specific climate adaption solutions for the water …
May 05, 2023
News
Primus Line® flies the flag for trenchless solutions in sensitive locations
Primus Line has illustrated the benefits of trenchless technology for pipeline rehabilitation in culturally sensitive areas during two installations for one of the world’s leading mining companies.
May 03, 2023
News
Optimising chemical dosing in a challenging operating climate
Rising operating costs and tightening regulations are presenting major challenges for wastewater treatment plant operators, but better optimisation of chemical dosing can drive efficiencies, says Adeel Hassan, product manager at Watson-Marlow Fluid Technology Solutions.
Contact
Imperial College London (UK)
Madeleyn Cajamarca
SW7 2AZ London
Phone:
+44 (0)20 7589 5111