What if plastic could detect light or clean wastewater?
Apr 28, 2022
This is precisely the principle behind the idea of bioengineered living, “functional” materials. This clever study used the kombucha technique to grow a starchy material (similar to ingredients of biodegradable plastic) that can detect light, remove hormones from wastewater, and more.
Engineered living materials are composed of both synthetic materials and living cells. They are made in a lab to do things, like respond to their environment, which goes beyond typical materials like inert plastics used to make so many of our products. What scientists want the material to do determines how it is produced.
Synthetic biologists, biologists who try to simulate life in the lab, have for a long time been engineering bacteria such as E. coli to produce organic materials of all kinds such as medicines, polymers, or starches. The idea was innovative, but many past experiments failed to produce high yields. Yield is important — companies want to produce engineered living materials at scale, and with minimum equipment and a low environmental impact.
Bacterial cellulose is a starchy organic compound that is made by certain species of bacteria. Bacterial cellulose can be altered by using engineering techniques to produce substances that can help degrade toxins such as antibiotics or hormones present in wastewater streams. Bacterial cellulose can also be produced at a low cost and is capable of being decomposed by bacteria and other organisms. Synthetic biologists have successfully engineered yeast and bacteria to make cellulose-based materials such as plastic, which has been used for biodegradable product packaging.
Similarly to how plant leaves build materials from tissues to achieve functions essential for their survival, synthetic biologists at MIT and Imperial College London wanted to develop a material that was like complex living tissue. However, instead of plants, they modeled their experiments after the process for making a drink called kombucha. Kombucha is a fermented drink that produces a symbiotic culture of bacteria and yeast, or “SCOBY.” The SCOBY on kombucha is a thick mass at the surface called a “pellicle” which is made of bacteria, yeast, and cellulose.
However, this co-culture is not a typical SCOBY that you’d find in a beverage. In the experiment, the scientists genetically manipulated the yeast in a SCOBY to make a synthetic SCOBY, or “Syn-SCOBY” for short. In a series of experiments, they got the Syn-SCOBY to sense light or chemicals in a solution. The Syn-SCOBY contained two special microbes – a lab strain of yeast, S. cerevisiae, and cellulose-producing bacterium called Komagataeibacter rhaeticus.
The researchers inserted genes into the yeast so they could perform tasks such as sensing chemicals or secreting enzymes, while Komagataeibacter rhaeticus bacteria produced the bacterial cellulose. The researchers had to figure out the right conditions that make both the yeast and bacteria happy, such as the correct amount of sugar to add. They tested the co-culture of the yeast and bacteria in multiple media recipes to determine which one produced the best pellicle.
The Syn-SCOBY produced a healthy pellicle and a thick layer of bacterial cellulose in three to four days. After successfully growing the pellicle, they tested to make sure it could be dehydrated and then rehydrated, which is an important characteristic for its use in industry since the material may need to be stored for long periods of time. They did find that the bacteria/yeast/cellulose material they made retained its function even after drying and rehydration.
In their earlier experiments, some of the S. cerevisiae yeast cells did not incorporate well into the pellicle and were found at the bottom of the liquid. This is not optimal since the scientists need to make sure the yeast cells stay in the pellicle in high concentrations, to perform the tasks instructed by the genetic programs assigned to them. To solve this problem, scientists grew the yeast in a more dense nutrient broth, forcing it to incorporate into the pellicle at the surface.
Once they achieved the desired result, scientists proceeded to make Syn-SCOBY materials that are engineered to respond to chemical and physical stimuli. For example, they instructed S. cerevisiae yeast to sense light by adding a gene to the yeast for a protein that changes shape when exposed to light. They also made a version of the material that could detect a hormone called B-estradiol, a form of estrogen. To do this, they inserted a gene into the yeast that produces a green fluorescent glowing protein when the estrogen comes into contact with the yeast. Chemical sensing materials may be useful for detecting contaminants in water.
Furthermore, they developed a contaminant-sensing Syn-SCOBY that allowed the yeast to detect other toxins present in the environment and secrete enzymes that helped remove them. Scientists engineered the yeast to secrete an enzyme called laccase to degrade the B-estradiol. These results show that the yeast cells are capable of responding to stimuli.
Syn-SCOBY represents one of the first batch-produced synthetic living materials with functions beyond structure for research, product manufacturing, and environmental remediation.
More News and Articles
May 28, 2022
News
Water Stewardship Now Critical for Business Resilience
With competition for water resources occurring in many regions of the world, how businesses meet their own needs and those of the communities in which they operate will be increasingly vital for their long-term survival and growth, says Erik Driessen, …
May 24, 2022
News
Singapore releases funds for new initiatives in water technologies
The Government has allocated $220 million under the Research, Innovation and Enterprise 2025 (RIE2025) Urban Solutions & Sustainability (USS) domain to drive new initiatives in water technologies and resource circularity. This draws from the National Research Fund, under the five-year …
May 23, 2022
News
Pumps for the 21st Century
The Pump Centre Conference offers a range of sessions headed by experts in their field. Here’s a precis of those talks made available so far, beginning with Smith & Loveless’ Andrew Hornabrook who considers the demands of optimising force main …
May 20, 2022
News
World Water Day: Groundwater – Making the Invisible Visible
Since 1993, the United Nations has been calling for World Water Day. This year under the motto “Groundwater: Making the Invisible Visible”. Groundwater is invisible, but its impact is visible everywhere. Out of sight, under our feet, groundwater is a …
May 19, 2022
Article
Significant need for growth in water and wastewater treatment sector - report
New Zealand's water sector must do more to attract a pipeline of talent in order to meet safe drinking water and improved environmental standards, a new report says.
May 18, 2022
News
The Water & Wastewater Equipment, Treatment and Transport (WWETT) Trade Show Successfully Wraps with Over 10,500 Registered Professionals in its Return to a Live Format Fueling Wastewater Industry Connection and Growth
WWETT, the world's largest annual trade show for wastewater and environmental service professionals, concluded its annual event February 21-24, at the Indiana Convention Center in Indianapolis.
May 17, 2022
News
Microbial cleaning crew scours sewage plants
Researchers decipher how the microbial inhabitants of sewage treatment plants help eliminate intestinal parasites.
May 16, 2022
News
EPA announces action plan to help protect water sector from cyberattacks
Late in January the U.S. Environmental Protection Agency (EPA) and its federal partners announced the Industrial Control Systems Cybersecurity Initiative – Water and Wastewater Sector Action Plan to help protect water systems from cyberattacks. It focuses on high-impact activities that …
May 13, 2022
News
Boston Joins the ZutaCore Certified System Integration Partner Program, to Expand Availability of Intelligently Applied™ Direct-on-Chip, Waterless, Two-Phase Liquid Cooling
Global System Integrator Adds HyperCool™ to Enhance its Portfolio of Sustainable Data Center Solutions
May 12, 2022
News
Unitywater appoints Anna Jackson new Chief Executive Officer
Water and sewerage services provider Unitywater today announced it had appointed Anna Jackson its new Chief Executive Officer.
May 11, 2022
News
App helps with difficult decisions
What is the best way to replace an old wastewater treatment plant? Which early warning system is most successful in protecting against flooding? Thanks to a method developed by Eawag, experts can analyse complex decision-making problems in a simple way.
May 10, 2022
News
Yarra Valley Water completes Doreen to Diamond Creek Sewerage Project
Yarra Valley Water has completed a $34 million project to upgrade the sewer network to support Melbourne’s fast-growing northern suburbs. A proud adopter of trenchless technology, Yarra Valley Water has an emphasis on adding value while minimising disruption to the …
Contact
Imperial College London (UK)
Madeleyn Cajamarca
SW7 2AZ London
Phone:
+44 (0)20 7589 5111