He dreams of a concrete paradise
May 02, 2023
Materials scientist Franco Zunino wants to revolutionise concrete using the right mix of the versatile material to radically reduce CO2 emissions.
Franco Zunino’s enthusiasm for the object of his research knows no bounds: “The magic and beauty are in the transformation. Concrete starts as a creamy fluid that can be poured into a mould. What emerges is a strong and durable product. This dual nature of concrete enables us to turn even the most far-fetched idea into reality.” Now round, now angular, concrete structures scrape the sky, break waves and cut through mountains. Concrete provides habitability, and protects against fire, water, pollution and radiation. Combined with steel, this “artificial stone” can withstand huge loads. “Concrete is a magical material,” says Zunino. No wonder, then, that it continues to proliferate. Humans require ever greater quantities of the stuff, especially in rapidly developing areas of the world such as India, Africa, Southeast Asia and South America. There is, however, a problem: its production consumes an enormous amount of energy and emits large quantities of CO2.
From bakery to kiln
Zunino works in the Physical Chemistry of Building Materials group at ETH Zurich’s Institute for Building Materials. A native of Chile, he has been doing research in Switzerland for six years, as he says, “for the future of our planet”. Since 2022 he has also been supported by an Ambizione grant from the SNSF. Zunino’s grandparents ran a bakery. Today, in the institute’s gleaming laboratory, amid high-performance kilns and mixers, Zunino still recalls the yeasty freshness of Chilean bread. The merest bite catapults him back to his childhood. As a boy, he was fascinated by the methodical process of baking bread – the precise measuring out of ingredients, the weighing of flour, the reactions in the dough, its consistency and how the flavour developed. “A recipe is all about quantities. A pinch of salt makes bread tasty; too much makes it inedible.” Concrete, too, is refined through minimal amounts of additives. These can make it more workable or fluid, stronger or even more durable. But they can also make it unusable.
Zunino picks up a smooth grey concrete cube. It is made of only a few simple ingredients: cement, sand, gravel, additives and water. Limestone and clay are first heated in a kiln and ground into powder together. The result is cement, a binder that lay people often confuse with actual concrete. Adding water produces a paste that then hardens. Properly formulated concrete is reliable, safe, robust and undemanding – the ideal choice for foundations and columns.
Except for that one problem. The cement-firing process not only consumes energy, but also releases significant amounts of CO2 from the limestone. Consequently, the concrete industry is a major emitter of greenhouse gases and responsible for up to 9 per cent of artificial greenhouse gas emissions worldwide. That corresponds to about four times the contribution of all air traffic. Nonetheless, these figures should be put into perspective. “Compared to other building materials such as steel, aluminium and glass,” says Zunino, “concrete has a relatively small carbon footprint. The sheer quantity of the material is what makes its footprint seem so immense.” Even timber is an impractical replacement as a building material because far too much of it would be needed: to replace even half of the concrete with timber, you’d probably have to plant a forest the size of India and wait 30 years... “Further improving concrete, this great building material, would be a significant advancement for the industry. The upside is huge.”
For this reason, Zunino and his team want to develop a new family of concrete – ultra-green concrete. The researchers estimate that this could save up to 800 million tonnes of CO2 worldwide per year, corresponding to 2 per cent of the carbon emissions generated by humans globally or 20 times Switzerland’s carbon emissions. To achieve this, Zunino will rely on a two-fold strategy. First, the proportion of cement (the particularly CO2-intensive component) will be reduced by around 60–70 per cent by replacing it with mineral additives. The goal is for these mineral additives, and not the cement, to shape the interactions in the concrete. That will require new types of chemical additives, in particular so-called polymer dispersants, which are a key focus of research. Second, the proportion of binder in concrete – i.e. cement plus water – will also be reduced.
The big challenge now is to understand down to the smallest detail the complex balance between flow behaviour and strength development so as to retain the same properties despite the changed formulation.
No alternative to concrete
“The human and economic aspects are just as important as the technical ones,” says Zunino. “The material has to cater for everyday demands. If it takes a week to harden, for example, instead of a day or so as is currently the case, it will not find acceptance.” Thus, the research team is working closely with a large cement manufacturer. “If we are successful, industry will have a solution at hand for meeting CO2 targets and saving on carbon taxes,” he says. Might a completely new building material be a solution? Hardly: “On the streets of Nigeria, where people may sometimes mix concrete with their bare hands, a rocket science solution would have no chance.”
Zunino dreams of having all concrete everywhere replaced overnight by its ultra-sustainable variant, without anyone noticing the difference. He says, laughing: “This would be a transformation as magical as that of the material itself.”
More News and Articles
Jun 05, 2023
Article
Hydrant-locating app launched for standpipe users
A free water hydrant-locating app for standpipe users has been launched by Aquam Water Services. The standpipe supplier developed the app to point permitted customers to the nearest hydrants approved for use by water companies, using information provided by individual …
Jun 02, 2023
News
Focus on pipe protection
Kwik-ZIP centraliser and spacer systems are solving challenges in trenchless pipe installations across Australia and worldwide. Late in 2022, Sydney Water and the West Region Delivery Team (WRDT) contracted Quickway for a water mains installation project. Quickway specialises in transport …
May 30, 2023
News
Trenchless contractor puts maintenance hole relining system through its paces
Civil and trenchless specialists M Tucker & Sons showcases its expertise through a UV lining project.
May 26, 2023
News
City of Toronto launches tunnel boring machine for stormwater tunnel and largest basement flooding prevention project
Today, the City of Toronto marked a major milestone for the Fairbank Silverthorn Storm Trunk Sewer System project, launching a tunnel boring machine that will work to construct a new storm sewer that will collect, store and move stormwater from …
May 24, 2023
News
Global Water and Wastewater Utilities Take Aim at Climate Change
New Survey of 100 Utilities Tracks Net-Zero Progress: 75% of Respondents to Reduce Greenhouse Gas Emissions by 2040
May 22, 2023
News
Regional San’s monumental wastewater treatment plant expansion project delivered ON schedule and UNDER budget
The EchoWater Project, one of the largest public works projects in the Sacramento region’s history, takes wastewater treatment to a whole new level
May 19, 2023
News
Haliotis 2: Wastewater recovery and treatment complex
In April the future, next-generation wastewater recovery and treatment complex for the Métropole Nice Côte d’Azur “Haliotis 2” was presented. Christian Estrosi, Mayor of Nice, President of the Métropole Nice Côte d’Azur and Deputy President of the Région Provence-Alpes-Côte d’Azur …
May 17, 2023
News
Wrapping up the challenges in SA
In December 2022, Denso Australia completed the supply of a project involving the protection of 400 lineal metres of DN250 mild steel pipeline in Bolivar, South Australia.
May 15, 2023
News
New South Wales university receives network upgrade using SAERTEX-LINER® MULTI Type S+
Australian Pipeline Management (APM) has successfully relined three separate pipelines running under a university in Sydney with UV cured-in-place technology from SAERTEX multiCom® GmbH.
May 12, 2023
News
IMPREG continues to invest in Australian and NZ market
With increasing demand of IMPREG’s unique UV pipe solution, the German company continues to invest in the Australian and New Zealand market.
May 10, 2023
Article
Yonge Street Project Combines Trenchless Rehab and New Install Practices
In the fall 2020, the Regional Municipality of York initiated a project to rehabilitate a 127 m long concrete box culvert under Yonge Street. The Region retained Jacobs Engineering to provide design and construction support services.
May 08, 2023
News
Climate adaption solutions for the water sector in the German-Danish border area
More than 60 participants met in Kolding, Denmark, from March 23 to 24 for the final conference of the INTERREG-Project NEPTUN. In the frame of this project, more than 40 partners elaborated 15 specific climate adaption solutions for the water …
Contact
Swiss National Science Foundation (SNF)
Nadine Leyser
Communications
Wildhainweg 3
CH-3001 Bern
Switzerland
Phone:
+41 31 308 22 22