The use of hydraulically bonded filling materials for the backfill of utility trenches in sewer construction
Jan 15, 2006
For several years now, self-compressing filling materials that are flowable when installed and subsequently self-hardening have been increasingly applied (mixtures of construction materials or mixtures of soil binders). They are named by the manufacturer or, in literature, referred to as liquid soil, soil mortar or filling mortar. They predominantly serve to fill the embedment, but in some cases also to produce the main filling. The following contribution serves to introduce the latest expert discussions, especially of planning agencies, of communities and suppliers of pipe networks as well as to present the pros and cons of the application of hydraulically bonded filling materials from the point of view of construction technology and statics.
Hydraulically bonded filling materials generally consist of the following basic materials [7, 8]:
- Initial construction material, e.g. delivered aggregates or (recycling-) materials (about 95%) or native soil (e.g. trench excavation)
- Plasticizer, e.g. mixture of water and swellable clays (bentonite), foam foamers, air-pore forming additives (tensides) or other mineral, vegetable and/or inorganic additives
- Plasticizer, e.g. mixture of water and swellable clays (bentonite), foam foamers, air-pore forming additives (tensides) or other mineral, vegetable and/or inorganic additives
- Stabiliser (binders), e.g. cement or lime (5% together with plasticizer).
After the trench has been excavated and secured, the pipe string is arranged and fixed on the trench base on wooden planks or sand bags (according to [14], the latter should be preferably used for static reasons) in compliance with the planning guidelines (Figure 2a). Before the hydraulically bonded filling material, which is delivered in fluid shape to the construction site in a mixing vehicle of ready-mix concrete (truck mixer), is inserted, so-called “section and load banks” of the same filling material in stiff shape must be installed to guarantee safety against buoyancy and positional stability (Figure 2b and Figure 3a). For ballasting purposes, these are preferably inserted onto the pipe joints with spaces of about 2.00 m to 2.50 m directly out of the concrete mixer via the concrete flume or via tremies or a hose, in exceptional cases via a pump.
To sum up, it can be said that the hydraulically bonded filling materials are a promising alternative to the conventional backfill of utility trenches with granular, unbonded filling materials. Their application may involve, for instance, the following advantages:
- Prevention of typical installation failures / damage causes which may occur during the conventional installation (e.g. insufficient filling and sealing of the spaces at both sides of the bottom half of the pipe, point bedding of the pipeline, sealing loads that are too high, application of inappropriate materials etc.)
- Reduction of the trench width according to DIN 4124 [15] or DIN EN 1610 [5] provided that the pipes can be installed by working just in front of them so that the personnel must not necessarily enter the space between the pipeline and the trench wall (admission required by TBG – Technologiebeteiligungsgesellschaft)
- Improvement of bedding conditions for the pipeline
- Reduction of the construction time by changing the construction procedures and clock cycles
- Prevention of surface settlements (especially in the range of the usual lining track)
- Prevention of vibrations, abandonment of vibration energy for mechanical sealing, reduction of noise emissions and vibration emissions
- Prolongation of the service life of the pipeline (reduction of ex-/infiltrations by a certain redundancy (the hardened precipitates generally have a low water permeability, depending on the manufacturer between 10-6 to 10-8 m/s), prevention of root ingress, defined bedding conditions by avoiding typical installation failures/damage causes (see above))
- durability or long-term behaviour
- requirements of the filling material
- impacts on the (pipe-)line embedded into the hydraulically hardened construction material at changing frost and dew conditions
- constant removableness or re-opening of the trench with simple device (so-called “spade removability”).
Literature
[1] Berger, W., Krausewald, J., van Heyden, L.: Boden-Mörtel: Anwendungsfragen und Wirtschaftlichkeit für den Tiefbau der Gasverteilung. gwf Gas & Erdgas 140 (1999), vol. 8, pp. 513-518.
[2] Just, A.: Einsatz von Flüssigboden in Braunschweig. bi-umweltbau (2003), vol. 1, pp. 42-44.
[3] ONR/FW 110A: Fernwärmeversorgung: Stabilisierte Rohrgrabenverfüllmaterialien. Technische Spezifikation für stabilisierte Rohrgraben-Verfüllmaterialien – SVM für den Einbau von Fernwärme-Kunststoffmantelrohren – KMR. Date of issue: 01 April 1999.
[4] Kiesselbach, G.: Projektstudie über die Verfüllung von Künetten. Im Auftrag des Magistrats der Stadt Wien, Magistratsabteilung 22 – Umweltschutz in Zusammenarbeit mit ÖkoKaufWien – working group Civil Engineering. Vienna, 1999.
[5] DIN EN 1610: Construction and testing of drains and sewers (10.1997) DIN EN 1610 supplement 1: Construction and testing of drains and sewers – List of relevant standards and guidelines (status as of 02.1997).
[6] Worksheet ATV-DVWK-A 139: Installation and testing of drains and sewers (01.2002) (ed.: German Association for Water, Wastewater and Waste e.V. – ATV-DVWK, Hennef).
[7] Worksheet FW 401 part 12: Verlegung und Statik von Kunststoffmantelrohren (KMR) für Fernwärmenetze. Bau und Montage; Organisation der Bauabwicklung, Tiefbau (02.1999).
[8] Stolzenburg, O.: RSS®-Flüssigboden im Kanalbau: Ein Praxisbericht. Dokumentation 18. Oldenburger Rohrleitungsforum, 05-06 February 2004.
[9] Kronenberger, E. J.: Bodenrecycling im Rohrleitungs- und Kanalbau: Wiedereinbau in trockener und flüssiger Form möglich. bi umweltbau (2002), vol. 2, pp. 44-46.
[10] Stein, D.: Instandhaltung von Kanalisationen. 3rd revised and extended edition, Ernst & Sohn, Berlin 1998.
[11] DIN 18300: VOB German construction contract procedures – part C: General technical specifications for building works (ATV); Earthworks (12.2000).
[12] Stein, D., Möllers, K.: Grabenverbau: Einflussfaktor auf das Ingenieurbauwerk Rohrleitung. Tiefbau (1988), vol. 3.
[13] Worksheet ATV-DVWK-A 127: Standards for the structural calculation of drains and sewers (08.2000).
[14] Static calculation concept by Prof. Dr.-Ing. Stein & Partner GmbH, Bochum (www.stein.de).
[15] DIN 4124: Excavations and trenches – Slopes, planking and strutting, breadths of working spaces (10.2002).
[16] CETE Normandie Centre (CETE = Centre d'Etudes techniques de l'Equipement.) (ed.): Verfüllung von Gräben – Verwendung von selbstverdichtenden Materialien. 3rd edition 03.1999. Standard of knowledge: 31 December 1997 (German translation).
More News and Articles
Mar 17, 2023
News
Trenchless manufacturer celebrates installation of 100,000th liner
SAERTEX multiCom®’s trenchless pipe relining product, SAERTEX-LINER, has been installed for the 100,000th time.
Mar 13, 2023
News
Spring collaborates with Microsoft and Impact X on water innovation
The water sector’s innovation centre of excellence – Spring - is collaborating with Microsoft and Impact X on a new initiative to make tools and funding available for start-ups to accelerate their companies.
Mar 10, 2023
Article
State of Global Water Resources report informs on rivers, land water storage and glaciers
WMO reports on freshwater availability in a changing climate
Mar 08, 2023
News
Australia: Centenarian sewer gets after-dark upgrade
Over 100 years since its inception, Brisbane’s S1 Main Sewer has undergone a seven-year upgrade.
Mar 06, 2023
News
UKWIR gives access to hundreds of water sector research reports
UK Water Industry Research (UKWIR) is providing free access to over 1,000 of its water sector research reports aimed at helping to improve water and wastewater services for customers, and protecting the environment.
Mar 03, 2023
News
Sector must challenge public misconceptions through engagement
The water sector must tackle “unfair criticisms” by sharing more about the great work it delivers, Yorkshire Water’s chief executive, Nicola Shaw, told attendees at British Water’s Better Together reception in Hull.
Mar 01, 2023
News
World-first project to ‘self heal’ cracked concrete using sludge could save $1.4 billion repair bill to Australia’s sewer pipes
Water treatment sludge could be used to prevent 117,000 kilometres of sewer pipes in Australia from cracking in future, without any intervention by humans, helping to save $1.4 billion in annual maintenance costs.
Feb 27, 2023
News
Delaware Water Treatment Plant Opts for Penetron to Protect New Concrete Structures
The final 2022 commissioning of the Doe Run Road Water Treatment Plant enables the city of Newark, Delaware (USA), to increase the quantity and quality of the city's drinking water to better meet growing demand – and EPA guidelines. PENETRON …
Feb 24, 2023
News
Aussie Trenchless: the future of pipe rehabilitation solutions
Aussie Trenchless has been passionate about progressing future infrastructure opportunities and accomplishing superior outcomes since it was founded in 2014.
Feb 22, 2023
News
IWA-Grundfos UN Water Conference youth delegates announced
The International Water Association and Grundfos are proud to announce that 14 bright and promising international young water professionals (YWPs) have been selected to be part of a delegation to the upcoming UN 2023 Water Conference, on 22-24 March 2023 …
Feb 20, 2023
News
Smart Lock makes short work: Hong Kong sewer drain repair
When the Hong Kong Drainage Services Department identified a badly damaged pipe, it was Smart Lock’s sleeve solution that empowered contractors to successfully rehabilitate the damaged section.
Feb 17, 2023
News
iMPREG celebrates UV Liner installation success in the UK
iMPREG has helped complete the task of installing an ultraviolet liner in the United Kingdom.
Contact
Prof. Dr.-Ing. Stein & Partner GmbH, Bochum
44801 Bochum (Germany)
Phone:
+49 234 51 67 - 0
Fax:
+49 234 51 67 - 109