Reducing Ruptured Reputations - Assessment Tools Reduce Risk of Failure on Sewer Force Mains

Aug 13, 2015

A ruptured sewer pipe can attract a lot of unwanted attention, even when it happens on private property. Last year, hours before celebrities were to arrive at the Golden Globes Awards show at the Beverley Hills Hotel, a reputed sewer pipe burst, spewing a mess of wastewater on the red carpet, according to media reports.

When large pipes fail, it’s usually breaking news. And when the failed pipeline is part of a pressurized wastewater force main network, repercussions to the environment and the public have the potential to be catastrophic, with fallout to a utility’s reputation.

In Canada, pressurized force mains that carry sewage make up only about 7.5 percent of the typical wastewater system compared to gravity mains. Because sewer force mains tend to run constantly, and often operate without redundancy, there is little opportunity to assess the pipes. When problems arise, and a critical force main is out of commission, the entire wastewater system can stop, causing overflows or the need to implement costly bypass pumping.

Worse still, pollution generated by a raw sewage leak can flood to the surface and into a watercourse. Clean-up costs can be staggering and environmental impacts can be devastating.

Force mains have unique signs of impending failure

Internally, force mains have unique warning signs of failure. Because of the sewage flow, trapped gas pockets can allow concentrations of hydrogen sulfide gas to be released from solution and subsequently convert to sulfuric acid by bacteria on the pipe wall, leading to corrosion of the pipe wall. As the pipe wall corrodes internally, it becomes weaker and more likely to fail unexpectedly.

While corrosion and defect failures on sewer pipelines are a fact of life for wastewater utilities, these failures do not occur systemically. As a result, knowing when to replace and when to preserve assets through close inspection is more critical than ever.

Addressing the high consequence of failure in wastewater pipes

Aging pipes, increasing costs of failures and high replacement costs represent significant challenges facing force main owners. As a result, utilities have come to rely on Pure Technologies for its suite of technologies that can identify the weak links. Selective rehabilitation of force mains maximizes the life of the asset, typically at 10-15 percent of replacement costs.

Pure’s strategy employs a risk-management approach that looks at likelihood of failure (LOF) and consequence of failure (COF). LOF variables are related to the chance that a pipe could fail, and include: pipe age, material, operating conditions and soil conditions, among other things. COF variables may include the pipe size, its location, environmental and social consequences of a rupture, interruption to service and tarnished public reputations.

Low risk assessment

For low risk force mains, screening and desktop evaluations such as hydraulic analysis and pressure management within the system are often enough to manage the assets. As risk goes up, however, utilities should look at higher resolution technologies that offer more confidence for higher predictability.

Medium resolution assessment

The SmartBall® Pipe Wall Assessment (PWA) tool is Pure’s best technology for identifying leaks, gas pockets and wall stress locations in metallic sewer force mains. PWA technology looks at pipeline walls affected by loading and bedding conditions, as well as other factors that cause stress on the pipe, including structural damage caused by internal or external corrosion.

As the free-swimming SmartBall tool rolls through the pipeline, it collects both acoustic and electromagnetic (EM) data. The acoustic sensor is used to identify the sound of wastewater leaving the pipeline, or more often, the sound of trapped gas at the top of the pipeline. Trapped gas within a force main may lead to internal corrosion and eventual breakdown of the pipe wall which is the primary cause of force main failures.

In addition to the acoustic data, the SmartBall platform also collects EM data to identify areas of the pipe wall that are under stress. Areas of the pipe wall with damage will be under more stress than areas with limited or no damage. Stress on the pipe wall can also be caused by other factors such as excessive loading and hard bedding surrounding the pipe.

Recent developments in SmartBall technology now allow for the combination of leak and gas pocket surveys with PWA surveys in a single deployment, providing a complete screening tool for force mains. Based on initial surveys using the SmartBall PWA tool, areas where gas pockets overlap with stress anomalies represent the largest area of concern of force main owners, as it indicates a high likelihood of corrosion.

High resolution assessment

In force mains with a higher risk, utilities should also consider assessment with a higher resolution tool in addition to a pre-screening survey that detects anomalous changes.

For lines that cannot be taken out of service, Pure can deploy the PipeDiver tool, which uses electromagnetic sensors to detect areas of damage along the pipeline. The inline inspection system is an innovative, free-swimming condition assessment platform specially designed for in-service inspection of pressure pipelines. Configured with PureEM™ sensor arrays, the tool can be used with precision to identify wire breaks in PCCP and broad areas of cylinder corrosion in metallic pipe.

No one solution for every pipe or pipeline

While there is no silver bullet for assessing every pipeline, if a utility has a strong understanding of the risk and operational conditions of different areas in their system, an appropriate and defensible inspection plan can be developed. This process allows force main owners to develop a sustainable long-term strategy for managing their critical force main assets.

More News and Articles


Pure Technologies

300, 705 - 11th Avenue S.W.

T2R 0E3 Alberta



+1 (403) 266 / 6794


+1 (403) 266 / 6570


To website