Interactive Software for Selection of Technologies for Installation and Replacement of Utilities
Dec 06, 2005
The decision of how to accomplish the installation or repair of a buried pipe in an urban environment involves tangible and intangible parameters. This paper outlines the development of comprehensive, yet straightforward and easy to use interactive software for the evaluation of alternative construction methods that can be employed in the installation, rehabilitation, or replacement of buried pipes and conduits. The software emphasizes simplicity and practicality, and limits input data to those readily available to utility engineers at the design stage of the project. Based on the specific characteristics of the problem(s) facing the decision-maker, the software performs a preliminary screening, eliminating technologies unlikely to meet the project’s requirements. A technical evaluation is then undertaken during which the technical capabilities of the various technologies identified in the first step are compared with the project’s attributes. Next, a risk analysis is performed based on the characteristics of the project's environment and the anticipated soil conditions. The model offers an interactive graphical user interface, and it is compiled as a standalone application compatible with common Microsoft operating systems platforms.
This project was commissioned by the National Utility Contractors Association (NUCA) Trenchless Technology Sub-Committee and is intended to be a companion to NUCA's Trenchless Construction and Rehabilitation Methods Manual (4th Edition). The program, titled U-COMET (Utility Construction Methods Evaluation Tool), was designed as stand-alone software to assist municipal and utility engineers in evaluating the technical feasibility of various traditional open cut, trenchless construction, and inline replacement methods for a specific project. U-COMET is compatible with IBM operating platforms such as Windows XP and Windows 2000. The program takes into account extensive performance data for 26 construction methods commonly used in utility type projects.
The objective of this project was to develop and codify an algorithm to accomplish the following tasks. First, the program needed to perform a sound technical evaluation as a screening measure to eliminate incompatible construction methods. Next, U-COMET would need to evaluate the overall perceived risk associated with the competing alternatives. Finally, the program needed to raise awareness and provide guidance to the utilization of trenchless technology methods.
The relational method databases contain a plethora of information about each method. The databases contain general information about each method, which includes a detailed method description, a color picture and the methods expected environmental impact and extent of excavation. The databases also contain information about the method's technical capabilities, which includes the maximum and minimum pipe diameters, the maximum and minimum drive lengths, and the maximum and minimum allowable depths of cover. The databases also contain pipe compatibility information for ten commonly used pipes as well as soil compatibility information for ten types of soil as well as ground water table limitations. A schema showing the relationships among the relational tables in the databases are shown in Figure 1.
The technical evaluation begins by defining the type of problem the user is facing. It is believed that all buried pipe problems can be reduced to either a structural problem or a capacity problem. U-COMET incorporates a built in wizard, which is based on a series of interactive questions presented to the user. Based on the user's answers, certain categories of construction methods might be eliminated. Figure 3 shows the built in wizard which contains a set of interactive questions for a structural problem.
After the technical evaluation stage, the methods that were deemed technically suitable for the project are then reevaluated for the relative level of risk associated with four different categories of risk. The first category is the installation parameters: drive length, pipe diameter, and depth of cover. In this category the project specific values are compared to the limits of each of the remaining construction methods. This comparison results in a percentage which is then assigned a risk level based on the percentage ranges shown in Table 2.
- If one or more of the dominant soil types is considered incompatible (N) with a given method, the method is deemed not permissible and is eliminated from further consideration.
- If all geological conditions were found to be compatible (Y) with the construction method in question, then the method is considered to be permissible and the associated level of risk is considered to be very low.
- If all geological conditions were found to be possibly compatible (P) with the construction method in question, then the method is considered to be permissible and the associated level of risk is considered to be very high.
- If geological conditions were found to be a combination of compatible (Y) and possibly compatible (P) with the construction method in question, then the method is considered to be permissible and the associated level of risk will ranged from very low to very high depending on the percentage of length of the alignment of the possibly-compatible soils which is shown in Table 4.
IRAIN | Initial Risk Analysis Index Number |
LR | Risk Classification for Length Ratio |
DR | Risk Classification for Diameter Ratio |
HR | Risk Classification for Depth Ratio |
SETI | Risk Classification for SET Index |
SCI | Risk Classification for Soil Compatibility Index |
EI | Risk Classification for Environmental Impact |
wLR | Weight for the Length Ratio |
wDR | Weight for the Diameter Ratio |
wHR | Weight for the Depth Ratio |
wSETI | Weight for the SET Index |
wSCI | Weight for the Soil Compatibility Index |
wEI | Weight for the Environmental Impact |
After computing the IRAIN a site accessibility adjustment is made, via the selection of the appropriate gamma value based on the description shown in Figure 9.
RAIN = IRAIN x (1 + eγY) ⁄ (1 + eγ) (2)
RAIN | Risk Analysis Index Number |
IRAIN | Initial Risk Analysis Index Number |
(γ) | Value from Figure 9 |
(Y) | Value from Equation (3) |
Y = (IRAIN-1) ⁄ 4 (3)
The Risk Analysis Index Number (RAIN) is the final risk value given by the program for each technically viable method. The final step consists of a form which displays each technically viable method and its RAIN score. The user is then able to make an educated decision about which method is best for their particular project.
U-COMET is a fully computerized algorithm for the evaluation of competing construction methods capable of installing, repairing, or replacing buried pipes and utilities. This approach emphasizes simplicity and practicality, while limiting the input data to that which is readily available to municipal and utility engineers via the utilization of an extensive built-in database. A built-in wizard as well as an extensive database is used to assist users who have limited experience with trenchless construction methods.
More News and Articles
May 30, 2023
News
Trenchless contractor puts maintenance hole relining system through its paces
Civil and trenchless specialists M Tucker & Sons showcases its expertise through a UV lining project.
May 26, 2023
News
City of Toronto launches tunnel boring machine for stormwater tunnel and largest basement flooding prevention project
Today, the City of Toronto marked a major milestone for the Fairbank Silverthorn Storm Trunk Sewer System project, launching a tunnel boring machine that will work to construct a new storm sewer that will collect, store and move stormwater from …
May 24, 2023
News
Global Water and Wastewater Utilities Take Aim at Climate Change
New Survey of 100 Utilities Tracks Net-Zero Progress: 75% of Respondents to Reduce Greenhouse Gas Emissions by 2040
May 22, 2023
News
Regional San’s monumental wastewater treatment plant expansion project delivered ON schedule and UNDER budget
The EchoWater Project, one of the largest public works projects in the Sacramento region’s history, takes wastewater treatment to a whole new level
May 19, 2023
News
Haliotis 2: Wastewater recovery and treatment complex
In April the future, next-generation wastewater recovery and treatment complex for the Métropole Nice Côte d’Azur “Haliotis 2” was presented. Christian Estrosi, Mayor of Nice, President of the Métropole Nice Côte d’Azur and Deputy President of the Région Provence-Alpes-Côte d’Azur …
May 17, 2023
News
Wrapping up the challenges in SA
In December 2022, Denso Australia completed the supply of a project involving the protection of 400 lineal metres of DN250 mild steel pipeline in Bolivar, South Australia.
May 15, 2023
News
New South Wales university receives network upgrade using SAERTEX-LINER® MULTI Type S+
Australian Pipeline Management (APM) has successfully relined three separate pipelines running under a university in Sydney with UV cured-in-place technology from SAERTEX multiCom® GmbH.
May 12, 2023
News
IMPREG continues to invest in Australian and NZ market
With increasing demand of IMPREG’s unique UV pipe solution, the German company continues to invest in the Australian and New Zealand market.
May 10, 2023
Article
Yonge Street Project Combines Trenchless Rehab and New Install Practices
In the fall 2020, the Regional Municipality of York initiated a project to rehabilitate a 127 m long concrete box culvert under Yonge Street. The Region retained Jacobs Engineering to provide design and construction support services.
May 08, 2023
News
Climate adaption solutions for the water sector in the German-Danish border area
More than 60 participants met in Kolding, Denmark, from March 23 to 24 for the final conference of the INTERREG-Project NEPTUN. In the frame of this project, more than 40 partners elaborated 15 specific climate adaption solutions for the water …
May 05, 2023
News
Primus Line® flies the flag for trenchless solutions in sensitive locations
Primus Line has illustrated the benefits of trenchless technology for pipeline rehabilitation in culturally sensitive areas during two installations for one of the world’s leading mining companies.
May 03, 2023
News
Optimising chemical dosing in a challenging operating climate
Rising operating costs and tightening regulations are presenting major challenges for wastewater treatment plant operators, but better optimisation of chemical dosing can drive efficiencies, says Adeel Hassan, product manager at Watson-Marlow Fluid Technology Solutions.
Contact
Erez Allouche
71272 Ruston, Louisiana, USA
Phone:
+1 318 257 2777
Fax:
+1 318 257 2852