Drifting & Tunneling - New Sandvik Alpha 330 tool system creates synergy between 20-kW rock drills & 45-mm drill bits
Aug 15, 2008
An extraordinary 30 to 80 per cent increase in rod life, more accurate collaring and straighter blast-holes are the main benefits of Alpha 330, a brand new tool system developed by Sandvik. Designed to exploit the power of 20-kW drifters to drill small-diameter holes faster, Alpha 330 signals a new era of rock-tool economy.
According to Anders Brungs, research and development manager at Sandvik Tools, the popular, world-standard R32 tool joint has been developed as far as possible. “It is a very good tool system for rock drills with impact power ratings up to about fifteen kilowatts,” he says, “but beyond that you need something more robust”. With so many customers insisting on sticking with 45-mm bits, however, Sandvik was limited in how much it could strengthen the joint simply by increasing the thread diameter, and had therefore to look at the design itself. “In the end, we did increase the thread size in the Alpha 330 system marginally, to R33,” says Brungs, “but the main reason for that was to make quite sure there would be no risk of users mixing it up with conventional R32, since Alpha 330 is based on a completely new, high-strength bit-connection concept. The rod itself is of the well-proven Hex 35 section, with a T38 thread at the shank end.”
Brungs and his colleagues explored a number of design avenues, including that of a tapered thread. Their primary aim was to minimize the effects of the reactive bending forces that cause the drill bit – under the influence of feed force, impact power and rotation – to deflect when collaring holes into the many oblique surfaces on the average drift or tunnel face, or when drilling into cracks or oblique changes in rock resistance inside the hole. FME analyses indicated repeatedly that the best way to increase the resistance of a drifter rod’s weakest point – the thread at the front of the rod – is to make the thread as short as possible. The effect is to move the weakest point of the rod forward and reduce the leverage of reactive bending forces on the threaded section as a whole. With a smaller moment of force acting on the weakest point, the front of the rod becomes proportionately less susceptible to bending and breakage.
The Alpha 330 system benefits further from the inherently stronger and more rigid R33 thread. Although only 1 millimetre larger in diameter, R33 has a 14 per cent larger cross-section than R32 and is therefore proportionately stronger, even without the benefits of a shorter thread. To improve rigidity still further, Sandvik has introduced a new guiding function between the rod and bit-skirt, immediately behind the thread. The provision of a snug interface at this crucial point at the rear of the connection greatly improves the rigidity of the joint. After the bit skirt, the rod cross-section increases to Hex-35 quickly and smoothly, without the typical gooseneck that is so vulnerable to bending, as well as to sandblasting by the drill cuttings. What is more, since the bit skirt covers the thread completely in the Alpha 330 connection, no part of the thread itself is exposed to sandblasting either. This reduces the risk of corrosion-fatigue, a common menace in rock drilling tools.
Exhaustive tests in aggressive, real-time mining environments in Australia and Canada have shown the service life of Alpha 330 to be from 30 to 80 per cent longer than that of R32. According to Anders Nyström, Sandvik Tools’ marketing manager for drifting and tunnelling equipment, the immense increase in performance vindicates completely the resolution that a completely new type of threaded connection was needed. “And when we talk about performance,” he says, “we mean not only the penetration rate and service life of the equipment, but also the quality of the blast holes produced, with regard to placement, straightness and cleanness, since all these factors have a decisive influence on quality and economy in drifting and tunnelling. Alpha 330 gives improvements right across the performance board.”
“At present,” continues Nyström, “we are introducing the Alpha 330 system in selected markets only, in order to ensure that we are always able to guarantee delivery. We are currently satisfying the demand for Alpha 330 in the mines where it was tested so successfully, and have now reached the position where we can guarantee support for whole markets in the selected regions. In terms of rod length, we have started with what customers asked for, namely 3.1, 3.7, 4.3 and 4.9-metre rods, with bit diameters from 43 to 51 mm. Since, technically, Alpha 330 should enable powerful rock drills to drill even longer rounds more accurately and economically with small-diameter bits, we expect a demand for longer rods as well. While current indications are that 4.9-metre rods are the longest required for 45-mm bits, we know that engineers continue to see even longer rounds as a means of cutting the number of work cycles, and thereby utilizing both manpower and machinery more efficiently. Where we can help them to realize this goal, we shall do so. With good flexibility in our manufacturing facilities, we are in a position to respond to demand quickly.”
Most engineers are familiar with the term ‘impact power’ as a means of rating rock-drill capacity. To arrive at the impact power of a rock drill, one has first to determine its impact energy. Expressed in joules, the impact energy is the product of the piston mass and the impact velocity, i.e. the speed at which the piston strikes the shank adapter. The impact power, expressed in watts, is then a product of the impact energy in joules times the impact frequency in hertz.
What is important to understand is that different relationships between impact energy and impact frequency can give the same impact power. In other words, a rock drill with low impact energy and high impact frequency can have the same impact power rating as one with high impact energy and low impact frequency. In addition to other factors, especially the geometry of the rock-drill piston, this greatly affects the load to which the tool system is subjected, and hence its service life. It also indicates whether the machine is suitable for hard or soft rock. A lighter blow at a higher frequency is suitable for softer rock. In hard rock, the lighter blow does not impart enough impact energy to crush the rock efficiently, and this is reflected in a poor penetration rate. Strike the tool system too hard, however, and the impact energy destroys it, especially when applied in combination with high bending stresses. Where there is good synergy, the tool system is able to transmit the total output of the rock drill into the rock with maximum effect for the longest possible time, and therefore efficiently and economically. Reducing the percussion pressure will reduce the impact power and prolong the life of the tool system. In hard rock, however, it will also reduce the penetration rate. The solution, says Sandvik, is not to turn down the percussion pressure, but to keep developing the strength of the tool system, and Alpha 330 is a big step in this direction.
The demand for small blast holes – drilled faster, deeper, more accurately and more economically – is easy to understand. Increasing the hole diameter to enable the use of more powerful rock drills and bigger tool systems can work in surface benching applications, since it is feasible to increase the burden and spacing when blasting toward two free faces. Indeed, doing so can have big economic advantages. In drifting and tunnelling, where there is just one free face, the situation is very different. In excavations with cross-sections up to about 50 m2, 45 mm is a de facto standard, particularly in the mining sector, not least because it is pretty close to the optimum blast-hole diameter for small to medium size faces. The rock can be fragmented satisfactorily at reasonable cost with today’s explosives – mainly bulk explosives – a good pull can be obtained and overbreak can be kept within acceptable limits. Since increasing the hole diameter would permit the burden and spacing to be increased only marginally, roughly the same number of holes would have to be drilled. Bigger holes would therefore yield nothing. They would simply inflate the cost of rock drilling, increase the specific charge and the consumption of explosives, and raise the risk of overbreak.
Thanks to companies like Sandvik, the cost of drifting and tunnelling has fallen for more than 100 years in succession. Between 1900 and 2000, productivity in the drilling cycle rose from about 15 to over 250 drillmetres per hour, an increase of around 1600 per cent. The drive to automate drill-rig functions and increase penetration rates continues unabated, fuelled by a mixture of bilateral market forces and increasing technological expertise. With today’s rock drills able to generate almost unlimited impact power, there is now more emphasis on controlling such power and, most importantly, ensuring that it is transmitted into the rock as efficiently, accurately and economically possible. That is the job of the rock drilling tools, which is why Sandvik has taken the development of the Alpha 330 tool system – the small nail for big hammers – so seriously.
More News and Articles
May 30, 2023
News
Trenchless contractor puts maintenance hole relining system through its paces
Civil and trenchless specialists M Tucker & Sons showcases its expertise through a UV lining project.
May 26, 2023
News
City of Toronto launches tunnel boring machine for stormwater tunnel and largest basement flooding prevention project
Today, the City of Toronto marked a major milestone for the Fairbank Silverthorn Storm Trunk Sewer System project, launching a tunnel boring machine that will work to construct a new storm sewer that will collect, store and move stormwater from …
May 24, 2023
News
Global Water and Wastewater Utilities Take Aim at Climate Change
New Survey of 100 Utilities Tracks Net-Zero Progress: 75% of Respondents to Reduce Greenhouse Gas Emissions by 2040
May 22, 2023
News
Regional San’s monumental wastewater treatment plant expansion project delivered ON schedule and UNDER budget
The EchoWater Project, one of the largest public works projects in the Sacramento region’s history, takes wastewater treatment to a whole new level
May 19, 2023
News
Haliotis 2: Wastewater recovery and treatment complex
In April the future, next-generation wastewater recovery and treatment complex for the Métropole Nice Côte d’Azur “Haliotis 2” was presented. Christian Estrosi, Mayor of Nice, President of the Métropole Nice Côte d’Azur and Deputy President of the Région Provence-Alpes-Côte d’Azur …
May 17, 2023
News
Wrapping up the challenges in SA
In December 2022, Denso Australia completed the supply of a project involving the protection of 400 lineal metres of DN250 mild steel pipeline in Bolivar, South Australia.
May 15, 2023
News
New South Wales university receives network upgrade using SAERTEX-LINER® MULTI Type S+
Australian Pipeline Management (APM) has successfully relined three separate pipelines running under a university in Sydney with UV cured-in-place technology from SAERTEX multiCom® GmbH.
May 12, 2023
News
IMPREG continues to invest in Australian and NZ market
With increasing demand of IMPREG’s unique UV pipe solution, the German company continues to invest in the Australian and New Zealand market.
May 10, 2023
Article
Yonge Street Project Combines Trenchless Rehab and New Install Practices
In the fall 2020, the Regional Municipality of York initiated a project to rehabilitate a 127 m long concrete box culvert under Yonge Street. The Region retained Jacobs Engineering to provide design and construction support services.
May 08, 2023
News
Climate adaption solutions for the water sector in the German-Danish border area
More than 60 participants met in Kolding, Denmark, from March 23 to 24 for the final conference of the INTERREG-Project NEPTUN. In the frame of this project, more than 40 partners elaborated 15 specific climate adaption solutions for the water …
May 05, 2023
News
Primus Line® flies the flag for trenchless solutions in sensitive locations
Primus Line has illustrated the benefits of trenchless technology for pipeline rehabilitation in culturally sensitive areas during two installations for one of the world’s leading mining companies.
May 03, 2023
News
Optimising chemical dosing in a challenging operating climate
Rising operating costs and tightening regulations are presenting major challenges for wastewater treatment plant operators, but better optimisation of chemical dosing can drive efficiencies, says Adeel Hassan, product manager at Watson-Marlow Fluid Technology Solutions.
Contact
Sandvik Mining and Construction
811 81 Sandviken, Sweden
Phone:
+46 (0)26-26 20 00
Fax:
+46 (0)26-26 02 22