A Nano-Solution to Global Water Problem: Nanomembranes Could Filter Bacteria
Apr 12, 2011
New nanomaterials research from the University at Buffalo could lead to new solutions for an age-old public health problem: how to separate bacteria from drinking water.
To the naked eye, both water molecules and germs are invisible -- objects so tiny they are measured by the nanometer, a unit of length about 100,000 times thinner than the width of a human hair.
But at the microscopic level, the two actually differ greatly in size. A single water molecule is less than a nanometer wide, while some of the most diminutive bacteria are a couple hundred.
Working with a special kind of polymer called a block copolymer, a UB research team has synthesized a new kind of nanomembrane containing pores about 55 nanometers in diameter -- large enough for water to slip through easily, but too small for bacteria.
The pore size is the largest anyone has achieved to date using block copolymers, which possess special properties that ensure pores will be evenly spaced, said Javid Rzayev, the UB chemist who led the study. The findings were published online on Jan. 31 in Nano Letters and will appear in the journal's print edition later this year, with UB chemistry graduate student Justin Bolton as lead author.
"These materials present new opportunities for use as filtration membranes," said Rzayev, an assistant professor of chemistry. "Commercial membranes have limitations as far as pore density or uniformity of the pore size. The membranes prepared from block copolymers have a very dense distribution of pores, and the pores are uniform."
"There's a lot of research in this area, but what our research team was able to accomplish is to expand the range of available pores to 50 nanometers in diameter, which was previously unattainable by block-copolymer-based methods," Rzayev continued. "Making pores bigger increases the flow of water, which will translate into cost and time savings. At the same time, 50 to 100 nm diameter pores are small enough not to allow any bacteria through. So, that is a sweet spot for this kind of application."
The new nanomembrane owes its special qualities to the polymers that scientists used to create it. Block copolymers are made up of two polymers that repel one another but are "stitched" together at one end to form the single copolymer.
When many block copolymers are mixed together, their mutual repulsion leads them to assemble in a regular, alternating pattern. The result of that process, called self-assembly, is a solid nanomembrane comprising two different kinds of polymers.
To create evenly spaced pores in the material, Rzayev and colleagues simply removed one of the polymers. The pores' relatively large size was due to the unique architecture of the original block copolymers, which were made from bottle-brush molecules that resemble round hair brushes, with molecular "bristles" protruding all the way around a molecular backbone.
The research on nanomembranes is part of a larger suite of studies Rzayev is conducting on bottle-brush molecules using a National Science Foundation CAREER award, the foundation's most prestigious award for junior investigators. His other work includes the fabrication of organic nanotubes for drug delivery, and the assembly of layered, bottle-brush polymers that reflect visible light like the wings of a butterfly do.
The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.
More News and Articles
Dec 04, 2023
News
Water loss reduction initiative expands to Mexico
In an effort to combat water loss, a global collaboration involving organizations from the UK, US, and Mexico is launching a long-term project in Querétaro, Mexico. Utilizing actionable AI, the initiative aims to manage and conserve water resources across 350km …
Dec 01, 2023
News
TBM on site for Melbourne CBD sewer upgrades
A microtunnel boring machine (TBM) has arrived on Elizabeth Street to help deliver one of the biggest upgrades to Melbourne CBD’s sewer network in more than a century.
Nov 29, 2023
News
Shedding light on evaporation
Researchers at MIT (Massachusetts Institute of Technology) have made a groundbreaking discovery that could change our understanding of evaporation, a ubiquitous process in our environment. They found that under certain conditions, light can directly cause evaporation without the need for …
Nov 27, 2023
News
NEW UNITRACC Construction Site Documentation: "Rehabilitation of a DN 400 Concrete Gravity Sewer with a SAERTEX-LINER® MULTI over a Length of 69 m" (CIPP)
New construction site documentation in the renovation section of the e-learning platform: Rehabilitation of a DN 400 concrete gravity sewer with CIPP lining using SAERTEX-LINER® MULTI, type S+ Standard. The objective of this rehabilitation measure was to enhance the structural …
Nov 24, 2023
News
Tracto grundoram supports sewer replacement at coastal town
Budleigh Salterton is a popular and picturesque seaside town situated within the East Devon Area of Outstanding Natural Beauty. Located at the start of the stunning Jurassic Coast; a UNESCO World Heritage Site recognised for its outstanding rocks, fossils and …
Nov 22, 2023
News
Interflow’s sustainability strategy
Having been in business for 86 years, Interflow has proven it knows a thing or two about longevity. Right now, that requires an all-encompassing sustainability strategy, as Richard McCarthy, Interflow’s executive general manager southern region, explained.
Nov 20, 2023
News
Mastering public sector challenges together
An interview with Managing Director Robert Ristow
Nov 17, 2023
News
Tractebel and Aurecon forge strategic partnership to revolutionize dam projects in Queensland, Australia
Tractebel and Aurecon form a strategic alliance to revolutionize dam projects in Queensland, Australia, combining their global expertise and local knowledge to meet the rising demand for dam upgrades.
Nov 15, 2023
News
HDD to help Monarto pipeline project
SA Water will use horizontal directional drilling (HDD) to assist in installing a section of pipe underneath the Melbourne to Adelaide rail corridor.
Nov 13, 2023
News
Neom’s sustainable water solutions with renewable desalination
Saudi Arabia’s visionary city, Neom, is leading the way in sustainable water solutions with the construction of a desalination plant powered entirely by renewable energy.
Nov 10, 2023
News
Adept delivers on Geelong infrastructure project
Adept Civil Group has successfully delivered on a sewer reticulation extension project at the Charlemont Rise estate.