Wastewater treatment a must for food safety
Apr 25, 2022
Untreated industrial and sometimes domestic wastewater usually contains potentially toxic elements in concentrations that are several-fold higher than the maximum permissible limits for irrigation and drinking water. The authorities have so far failed to effectively enforce waste treatment laws, and strict adherence to the norms has remained a daunting task. Proper processing and management will improve food quality and safety as well as human and animal health.
THE fast-paced demographic changes and lack of awareness regarding hazards of wastes are adversely impacting water, soil, air, plants, food, feed, animals and humans. Urban and industrial sectors in India generate large quantities of solid wastes and wastewater, which are rising exponentially. Depending upon the source, wastewater may contain toxic elements — lead (Pb), cadmium (Cd), nickel (Ni), chromium (Cr), aluminium (Al), cobalt (Co) and cyanide (CN); essential plant nutrients — nitrogen (N), phosphorus (P) and potassium (K), zinc (Zn), iron (Fe), copper (Cu), and manganese (Mn); and pathogenic microorganisms.
Treatment of industrial wastewaters and sewage sludge is mandatory in India. Effluent treatment facilities for individual and clusters of industries are constructed in cities and towns for primary, secondary and tertiary treatment to remove toxic substances and kill pathogens. However, disposal of untreated industrial and urban wastewater into surface drains, underground water-recharging tube-bores, water bodies and for irrigation of field crops is common. Thus, toxic substances and perilous pathogens present in untreated effluents pose great health hazards to animals and humans through the soil/water-plant-animal-human continuum. The most important sources of water pollution with regard to human activities are urban and industrial wastewater.
Punjab Agricultural University (PAU) studies have shown the concentration of potentially toxic elements in wastewaters being several-fold higher for industrial cities (Ludhiana, Jalandhar and Amritsar) compared to less or non-industrial cities (Sangrur and Abohar). Further, sewage water from the domestic zone contained lesser toxic elements. In wastewater from electroplating industrial area, the Cr, Ni and CN concentrations were much higher than maximal tolerable limits for disposal on agricultural lands. Two case studies from Ludhiana’s open drain Buddha Nullah and Jalandhar are conspicuous. The Buddha Nullah carries nearly clean water before entering Ludhiana.
When travelling 15 km through the city, an increasing number of industries pour untreated wastewater that increases concentration of toxic metals manifold to make water almost like poison. The concentrations of Pb, Cr, Cd and Ni in wastewater at the city end, respectively, were 21, 133, 700, and 2,200 times higher than those in deep-tubewell water. Similarly, the concentration of Cr and Al in its water increased manifold after receiving the wastewater from the leather-manufacturing factories in Jalandhar city. Buddha Nullah, Kali Bein (historic rivulet turned into a sewer drain around Sultanpur Lodhi and Kapurthala) and several other drains eventually merge with Sutlej and Beas rivers, thus polluting their fresh waters, which are used for irrigation and drinking in Malwa region of Punjab, and Rajasthan.
Industries often drill deep tube-bores for disposal of their wastewater on or near their locations. Experts point out that this practice of so-called ‘charging ground aquifer’ actually pollutes the natural and clear water. One PAU study revealed that the concentrations of Pb, Cd, Ni and Cr were significantly higher in shallow hand-pumps’ water samples located within 200 metres of Buddha Nullah than deep-tubewell water, and were several-fold higher than the permissible drinking water standards. This is one of the main reasons for more and more groundwater becoming unfit for animal and human consumption, and in some cases for irrigation. A PAU investigation showed that bioavailable concentrations of Pb, Cd and Ni in surface soils, largely irrigated with sewage water, around densely industrialised area of Ludhiana were much greater than in the soils around a less industrialised city, Sangrur,
Adverse impact on crops
Growing vegetable and fodder crops using wastewater is a common practice near cities. These could cause toxicity in humans (consumption of vegetables) or animals (fodder) and subsequently in humans consuming milk, meat, etc. In a PAU study, the concentration of Cd in aboveground parts of maize, rapeseed (sarson & toria), pearl millet (bajra) and lady’s finger (bhindi) was 2-3.5 times higher when grown in polluted than non-polluted soils. The Ni concentration in various crops was 16% to 136% higher in wastewater-irrigated than tubewell-water irrigated crops.
Remedies
Well-developed technologies are being used to treat wastewater for ensuring its good quality before use in several countries. In Europe and North America, water is generally pumped out from nearby water bodies (river, streams and lakes), cleaned and supplied to the cities and industries. Then, wastewater is treated before use for irrigation and excess is released to water bodies. But in India, open sewage-water drains pollute the shallow groundwater of hand-pumps and tube-wells installed in their vicinity.
Wastewaters of industries and cities must be efficiently treated, by considering both useful (nutritive and irrigation potential for crops) and harmful effects (toxic substances and pathogens) to meet requisite parameters, before they are discharged to drains or used for irrigation. Untreated industrial and sometimes domestic wastewater usually contains potentially toxic elements in concentrations several-fold higher than the maximum permissible limits for irrigation and drinking water. The authorities have so far failed to effectively enforce the waste treatment laws, and strict adherence to the norms has remained a daunting task.
Proper processing and management would lead to a win-win situation by upcycling and reusing of wastewaters and minimising environmental damages. It will also improve food quality and safety as well as human and animal health. Future food security, quality of food and feed, soils, animals and humans will depend on safeguarding our land, soil and water resources.
More News and Articles
Mar 24, 2023
News
Innovative technologies remove pharmaceutical residues from wastewater
Every year on 22 March, World Water Day reminds us of the importance of one of the most important resources of life. Almost two-thirds of our planet is covered with water, but not even three percent is drinkable freshwater. Every …
Mar 22, 2023
Article
Delivering sustainable solutions to solve water challenges
With British Water’s conference on creating a more sustainable water sector approaching, Stephen Kennedy, head of digital and innovation at MWH Treatment shares his views on celebrating recent successes in creating a more sustainable sector while also discussing the challenge …
Mar 20, 2023
News
Supporting the National Water Strategy through scientific research
This month, the federal government of Germany introduced the first National Water Strategy. “With this strategy, the federal government is shining a spotlight on the necessity of integrated water resource management, serving as a leading example of resource use in …
Mar 17, 2023
News
Trenchless manufacturer celebrates installation of 100,000th liner
SAERTEX multiCom®’s trenchless pipe relining product, SAERTEX-LINER, has been installed for the 100,000th time.
Mar 13, 2023
News
Spring collaborates with Microsoft and Impact X on water innovation
The water sector’s innovation centre of excellence – Spring - is collaborating with Microsoft and Impact X on a new initiative to make tools and funding available for start-ups to accelerate their companies.
Mar 10, 2023
Article
State of Global Water Resources report informs on rivers, land water storage and glaciers
WMO reports on freshwater availability in a changing climate
Mar 08, 2023
News
Australia: Centenarian sewer gets after-dark upgrade
Over 100 years since its inception, Brisbane’s S1 Main Sewer has undergone a seven-year upgrade.
Mar 06, 2023
News
UKWIR gives access to hundreds of water sector research reports
UK Water Industry Research (UKWIR) is providing free access to over 1,000 of its water sector research reports aimed at helping to improve water and wastewater services for customers, and protecting the environment.
Mar 03, 2023
News
Sector must challenge public misconceptions through engagement
The water sector must tackle “unfair criticisms” by sharing more about the great work it delivers, Yorkshire Water’s chief executive, Nicola Shaw, told attendees at British Water’s Better Together reception in Hull.
Mar 01, 2023
News
World-first project to ‘self heal’ cracked concrete using sludge could save $1.4 billion repair bill to Australia’s sewer pipes
Water treatment sludge could be used to prevent 117,000 kilometres of sewer pipes in Australia from cracking in future, without any intervention by humans, helping to save $1.4 billion in annual maintenance costs.
Feb 27, 2023
News
Delaware Water Treatment Plant Opts for Penetron to Protect New Concrete Structures
The final 2022 commissioning of the Doe Run Road Water Treatment Plant enables the city of Newark, Delaware (USA), to increase the quantity and quality of the city's drinking water to better meet growing demand – and EPA guidelines. PENETRON …
Feb 24, 2023
News
Aussie Trenchless: the future of pipe rehabilitation solutions
Aussie Trenchless has been passionate about progressing future infrastructure opportunities and accomplishing superior outcomes since it was founded in 2014.
Contact
The Tribune
Sector 29-C
160030 Chandigarh (UT)
India
Phone:
91-0172-2670280