Saving energy: Pumping liquids should follow the heartbeat
Sep 25, 2023
Pumping liquids may seem like a solved problem, but optimizing the process is still an area of active research. Any pumping application—from industrial scales to heating systems at home—would benefit from a reduction in energy demands. Researchers at the Institute of Science and Technology Austria (ISTA) now showed how pulsed pumping can reduce both friction from and energy consumption of pumping. For this, they took inspiration from a pumping system intimately familiar to everyone: the human heart.
According to an international study, nearly twenty percent of global electric power are used for pumping liquids around—ranging from industrial applications pumping oil and gas to heating installations pumping hot water in private homes. A team of researchers around Davide Scarselli and Björn Hof from the Institute of Science and Technology Austria (ISTA) looked for a way to reduce these energy demands, taking inspiration from nature. In a new study, now published in the scientific journal Nature, they showed that pumping liquids through a pipe in pulses—much like the human heart pumps blood—can reduce the friction in the pipe and therefore also the energy consumed.
Turbulent Friction
“Over the years, researchers and engineers have been trying to make pumping fluids more efficient,” Davide Scarselli, first author of the study, says. “While many solutions are being simulated or tested in labs, they often are too complex and therefore too costly to be implemented in real industrial applications. We were looking for an approach that does not require complicated structural changes to the infrastructure like sensors and actuators.” Instead of changing the makeup of the pipes to reduce the friction between the moving liquid and the pipes’ walls, the scientists tried a different approach.
“Like any part of our bodies, the human heart has been shaped by millions of years of evolution,” Björn Hof, professor at ISTA, explains. “Unlike common mechanical pumps, which create a steady stream of liquid, the heart pulsates. We were curious if there may be an advantage to this peculiar propulsion form.” To this end, Scarselli and his colleague Atul Varshney created several experimental setups using clear pipes with different lengths and diameters through which they pumped water.
“The baseline for our experiments was a steady flow of water, where swirls and eddies moved chaotically while being pushed through the pipe,” Scarselli recounts. These swirls and eddies are called turbulence and they create a lot of the friction between the liquid and the walls of the pipe, costing energy to overcome. The researchers made the turbulence visible by adding tiny reflective particles to the water and shining a laser through the clear pipe. Scarselli adds, “The laser shoots light through the pipe in a horizontal sheet and gets reflected by the particles. We then took pictures that could be used to detect whether the flow was turbulent or laminar—the latter meaning without swirls and eddies.”
Reducing Friction by Resting
Next, the scientists tried several modes of pulsating pumping. Some pulse modes would first accelerate the water slowly and then quickly stop it, while others would do it the other way around. Hof explains the results, “Typically pulsation increased the drag and the energy required for pumping, which was not what we were looking for. However, when we introduced a short resting phase between the pulses where the pump does not push the water—just like the human heart does—we got much better results.” With these resting phases between the pumping pulses, the amount of turbulence in the pipe drastically decreased.
“During the rest phase, turbulence levels are reduced and make the subsequent acceleration phase much more effective at reducing friction,” Scarselli adds. For an optimized pulsing pumping motion similar to the one of the human heart, the researchers found a 27 percent decrease of mean friction and a 9 percent reduction in energy demand.
“A reduction of friction and turbulent fluctuations is clearly advantageous in the biological context because it prevents damage to the cells sensitive to shear stress that make up the inner most layer of our blood vessels. We could potentially learn from this and exploit it in future applications,” Hof explains. Scarselli adds, “While we demonstrated promising results in the lab, real-world applications of our research are less straight forward. Pumps would have to be refitted to produce these pulsating motions. However, this would still be much less costly than modifications to the pipe walls or fitting of actuators. We hope that other scientists will build upon our results to explore these nature-inspired solutions for industrial applications."
More News and Articles
Dec 01, 2023
News
TBM on site for Melbourne CBD sewer upgrades
A microtunnel boring machine (TBM) has arrived on Elizabeth Street to help deliver one of the biggest upgrades to Melbourne CBD’s sewer network in more than a century.
Nov 29, 2023
News
Shedding light on evaporation
Researchers at MIT (Massachusetts Institute of Technology) have made a groundbreaking discovery that could change our understanding of evaporation, a ubiquitous process in our environment. They found that under certain conditions, light can directly cause evaporation without the need for …
Nov 27, 2023
News
NEW UNITRACC Construction Site Documentation: "Rehabilitation of a DN 400 Concrete Gravity Sewer with a SAERTEX-LINER® MULTI over a Length of 69 m" (CIPP)
New construction site documentation in the renovation section of the e-learning platform: Rehabilitation of a DN 400 concrete gravity sewer with CIPP lining using SAERTEX-LINER® MULTI, type S+ Standard. The objective of this rehabilitation measure was to enhance the structural …
Nov 24, 2023
News
Tracto grundoram supports sewer replacement at coastal town
Budleigh Salterton is a popular and picturesque seaside town situated within the East Devon Area of Outstanding Natural Beauty. Located at the start of the stunning Jurassic Coast; a UNESCO World Heritage Site recognised for its outstanding rocks, fossils and …
Nov 22, 2023
News
Interflow’s sustainability strategy
Having been in business for 86 years, Interflow has proven it knows a thing or two about longevity. Right now, that requires an all-encompassing sustainability strategy, as Richard McCarthy, Interflow’s executive general manager southern region, explained.
Nov 20, 2023
News
Mastering public sector challenges together
An interview with Managing Director Robert Ristow
Nov 17, 2023
News
Tractebel and Aurecon forge strategic partnership to revolutionize dam projects in Queensland, Australia
Tractebel and Aurecon form a strategic alliance to revolutionize dam projects in Queensland, Australia, combining their global expertise and local knowledge to meet the rising demand for dam upgrades.
Nov 15, 2023
News
HDD to help Monarto pipeline project
SA Water will use horizontal directional drilling (HDD) to assist in installing a section of pipe underneath the Melbourne to Adelaide rail corridor.
Nov 13, 2023
News
Neom’s sustainable water solutions with renewable desalination
Saudi Arabia’s visionary city, Neom, is leading the way in sustainable water solutions with the construction of a desalination plant powered entirely by renewable energy.
Nov 10, 2023
News
Adept delivers on Geelong infrastructure project
Adept Civil Group has successfully delivered on a sewer reticulation extension project at the Charlemont Rise estate.
Nov 09, 2023
News
NEW LAUNCH: UNITRACC Module "Details on the Installation of Lining with UV Cured-in-Place Pipes" (Renovation: CIPP)
Introducing the new e-learning module for the course "Renovation: Lining with Cured-In-Place Pipes"! This module focuses on the installation of UV CIPP using the high-quality SAERTEX-LINER® specifically designed for gravity pipes and sewers - with contributions by renowned manufacturer SAERTEX …
Contact
Institute of Science and Technology Austria (ISTA)
Am Campus 1
3400 Klosterneuburg
Austria
Phone:
+43 2243 9000
Fax:
+43 2243 9000 2000